Friday, 24 January 2014

Pipeline Pigging

Pipeline pigs are devices that are placed inside the pipe and traverse the pipeline. While buildup in a pipeline can cause transmittal slows or even plugging of the pipeline, cracks or flaws in the line can be disastrous. A form of flow assurance for oil and gas pipelines and flowlines, pipeline pigging ensures the line is running smoothly.

The maintenance tool, pipeline pigs are introduced into the line via a pig trap, which includes a launcher and receiver. Without interrupting flow, the pig is then forced through it by product flow, or it can be towed by another device or cable. Usually cylindrical or spherical, pigs sweep the line by scraping the sides of the pipeline and pushing debris ahead. As the travel along the pipeline, there are a number functions the pig can perform, from clearing the line to inspecting the interior.


Figure 1. Foam pig [].


Types of Pipeline Pigs

Although first used simply to clear the line, the purpose of pipeline pigging has evolved with the development of technologies. Utility pigs are inserted into the pipeline to remove unwanted materials, such as wax, from the line. Inline inspection pigs can also be used to examine the pipeline from the inside, and specialty pigs are used to plug the line or isolate certain areas of the line. Lastly, gel pigs are a liquid chemical pigging system.

Similar to cleaning your plumbing line, utility pigs are used to clean the pipeline of debris or seal the line. Debris can accumulate during construction, and the pipeline is pigged before production commences. Also, debris can build up on the pipeline, and the utility pig is used to scrape it away. Additionally, sealing pigs are used to remove liquids from the pipeline, as well as serve as an interface between two different products within a pipeline. Types of utility pigs include mandrel pigs, foam pigs, solid cast pigs and spherical pigs.


Figure 2. Pipeline pig [].

Inspection pigs, also referred to as in-line inspection pigs or smart pigs, gather information about the pipeline from within. . The type of information gathered by smart pigs includes the pipeline diameter, curvature, bends, temperature and pressure, as well as corrosion or metal loss. Inspection pigs utilize two methods to gather information about the interior condition of the pipeline: magnetic flux leakage (MFL) and ultrasonics (UT). MFL inspects the pipeline by sending magnetic flux into the walls of the pipe, detecting leakage, corrosion, or flaws in the pipeline. Ultrasonic inspection directly measures the thickness of the pipe wall by using ultrasonic sounds to measure the amount of time it takes an echo to return to the sensor

Specialty pigs, such as plugs, are used to isolate a section of the pipeline for maintenance work to be performed. The pig plug keeps the pipeline pressure in the line by stopping up the pipeline on either side of where the remedial work is being done.

A combination of gelled liquids, gel pigs can be used in conjunction with conventional pigs or by themselves. Pumped through the pipeline, there are a number of uses for gel pigs, including product separation, debris removal, hydrotesting, dewatering and condensate removal, as well as removing a stuck pig.

Because there now exist multi-diameter pipelines, dual and multi-diameter pigs have been developed, as well.


Intelligent Pigs

The accuracy of location and measurement of anomalies by the intelligent pigs has continued to improve. Initially, the electronics and power systems were so large that intelligent pigs could be used only in lines 30 in. and greater in size. The continued sophistication and miniaturization of the electronic systems used in the intelligent pigs has allowed the development of smaller pigs that can be used in small-diameter pipelines. Newly enacted DOT pipeline-integrity regulations and rules acknowledge the effectiveness of the intelligent pigs and incorporate their use in the pipeline-integrity testing process.


Pig Launchers and Receivers

Pigging facilities and considerations should be incorporated into the pipeline system design. Basic pigging facilities require a device to launch the pig into the pipeline and a receiver system to retrieve the pig as shown in Fig. 3. The launcher barrel is typically made from a short segment of pipe that is one to two sizes larger than the main pipeline and is fitted with a transition fitting (eccentric reducer) and a special closure fitting on the end. The barrel is isolated from the pipeline with full-port gate or ball valves. A “kicker” line, a minimum of 25% capacity of the main line, is tied from the main pipeline to the barrel, approximately 1 1/2 to 2 pig lengths upstream of the transition reducer, to provide the fluid flow to “launch” the pig into the pipeline. The barrel is fitted with blowdown valves, vent valves, and pressure gauges on the top and drain valves on the bottom. The length of the barrel is determined by the length and number of pigs to be launched at any one time. Receivers have many of the same features.


Figure 3. Typical sphere launcher and receiver traps.

Pig Selection

Pig runs of between 50 to 100 miles are normal, but pig runs exceeding 200 miles should be avoided as the pig may wear and get stuck in the line. Cleaning pigs may be constructed of steel body with polyurethane cups or discs and foam pigs with polyurethane wrapping, solid urethane disc, and steel body with metallic brushes. Drying pigs are usually low-density foam or multicup urethane. The intelligent pigs may be:

  • Magnetic flux leakage
  • Ultrasonic
  • Elastic/shear wave
  • Transponder/transducer
  • Or combinations thereof

Internal-coating pigs are generally multicup urethane type. Batching pigs are typically bidirectional, multidisk rubber, which maintain efficiency up to 50 miles. Pigs used for obstruction inspection are typically urethane, multicup type fitted with an aluminum gauge plate or a gel type.

Spheres are generally sized to be approximately 2% greater diameter than the pipe internal diameter. Cups and discs are typically sized to be 1/16 to 1/8 in. larger in diameter than the pipe ID. Foam pigs have to be significantly oversized. Foam pigs 1 to 6 in. in diameter should be oversized by 1/4 in.; foam pigs 8 to 16 in. in diameter should be oversized 3/8 to 1/2 in.; foam pigs 18 to 24 in. in diameter should be oversized 1/2 to 1 in.; and foam pigs 28 to 48 in. in diameter should be oversized 1 to 2 in.


No comments:

Post a Comment